CONTENTS

EMBEDDED SYSTEMS ENGINEERING

Special Features
The High-Frequency Signals of PCIe 4.0 3
Demand Higher Performance from Engineers
By Lynnette Reese, Editor-in-Chief,
Embedded Systems Engineering

Q&A with Al Yanes, PCI-SIG 6
By Anne Fisher, Managing Editor

Product Showcases
Small Form Factors
Data Acquisition

ACCES I/O Products, Inc. 8
Rugged, Industrial Strength PCI Express
Mini Card Embedded I/O Solutions

Hardware Development

Teledyne LeCroy 9
Teledyne LeCroy's PCI Express®
Protocol Analysis and Test Tools

IN THIS ISSUE

EXTENSION MEDIA

Extension Media, LLC Corporate Office
President and Publisher
Vince Ridley
vridley@extensionmedia.com
(415) 255-0390 ext. 18
Vice President & Publisher
Clair Bright
cbright@extensionmedia.com
Human Resources / Administration
Darla Rovetti

Special Thanks to Our Sponsors

ACCES I/O PRODUCTS, INC.

Dolphin

TELEDYNE LECROY
Everywhere you look

Embedded Systems Engineering is published by Extension
Media LLC, 1786 18th Street, San Francisco, CA 94107.
Copyright © 2018 by Extension Media LLC. All rights
reserved. Printed in the U.S.
The High-Frequency Signals of PCIe 4.0 Demand Higher Performance from Engineers

PCI 4.0 meets growing throughput demands but requires hair-pulling attention to detail from engineers to make it happen.

By Lynnette Reese, Editor-in-Chief, Embedded Systems Engineering, Embedded Intel Solutions

If a processor has to access a peripheral, it might use Peripheral Component Interconnect Express (PCIe® or PCI Express®). PCIe is a high-speed serial computer expansion bus that replaced PCI (a parallel bus). PCIe, a dual simplex point-to-point serial connection, is a product of an Intel® R&D Lab begun in the 1990s. It briefly competed with a couple of other standards but gained momentum for broad adoption by the mid-'90s. The latest standard, PCIe 4.0, launched in October 2017, increasing speeds to 16 Gb/s per lane. This means that PCIe 4.0 is switching a voltage sixteen billion times per second over a differential pair.

“An acceptable eye height for PCIe 3.0 is 25 mv. For PCIe 4.0, it’s reduced to 15 mv.”

PCI Express is scalable, as well. PCIe 4.0 can be implemented as one lane up through sixteen bidirectional lanes, at almost 16 GT/s. Each lane is a differential pair comprised of one transmit signal and one receive signal. For more bandwidth, PCIe is commonly scaled up to two (x2), four (x4), eight (x8), or sixteen lanes (x16), although the standard allows up to 32 (x32) lanes. If there are 16 lanes of PCIe 4.0 in use, total throughput can reach almost 64 GB/s, with 16 signals transmitting and 16 signals receiving at the same time.

EVOLVING APPLICATIONS

PCIe has evolved to accommodate the need for speed in other technologies, such as storage. PCIe Express is most widely recognized for network cards and enabling gaming-level graphic cards. However, beginning with PCIe 3.0, it also began implementation for storage on Solid State Drives (SSD). SSDs are much faster than magnetic hard disk drives (HDDs), which have been in use since before conventional PCI was invented. SSDs found a distinct advantage in faster access through a PCIe serial bus standard. With PCIe, the SSD industry gained the advantage of speed. What’s more, the PCIe standard was already proven and demonstrated excellent interoperability with other products. Personal computers with an SSD may have a SATA or SATA Express connection, as they may be lower cost than PCIe. However, the SSD industry is starting to move to PCIe, most using an M.2 connector (previously known as Next Generation Form Factor). In addition to PCIe 3.0, the M.2 connector standard can also

Table 1: PCIe through the years. PCIe 4.0, when scaled up to 16 lanes, has a total throughput of 31.5 GB/s. *The term “GT/s” means Gigatransfers per second. “Transfers per second” includes overhead bits, which is more realistic, since bits per second would include overhead that does not contribute to throughput.

<table>
<thead>
<tr>
<th>Standard Version</th>
<th>Raw Bit Rate (GT/s)*</th>
<th>Throughput per lane (x1) in each direction</th>
<th>Total Bandwidth @ 16 lanes</th>
<th>Introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe 1.0</td>
<td>2.5 GT/s</td>
<td>250 MB/s</td>
<td>8 GB/s</td>
<td>2003</td>
</tr>
<tr>
<td>PCIe 2.0</td>
<td>5 GT/s</td>
<td>500 MB/s</td>
<td>16 GB/s</td>
<td>2007</td>
</tr>
<tr>
<td>PCIe 3.0</td>
<td>8 GT/s</td>
<td>985 MB/s</td>
<td>~32 GB/s</td>
<td>2010</td>
</tr>
<tr>
<td>PCIe 4.0</td>
<td>16 GT/s</td>
<td>1,969 GB/s</td>
<td>~64 GB/s</td>
<td>2017</td>
</tr>
<tr>
<td>PCIe 5.0</td>
<td>32 GT/s</td>
<td>3,938 GB/s</td>
<td>~128 GB/s</td>
<td>~2019</td>
</tr>
</tbody>
</table>

*The term “GT/s” means Gigatransfers per second. “Transfers per second” includes overhead bits, which is more realistic, since bits per second would include overhead that does not contribute to throughput.

Figure 1: PCIe terminology. A differential signal is carried by a pair of wires, as differential signaling helps maintain signal integrity. Two of these differential pairs are in each lane; one pair to transmit and one pair to receive. A link describes the physical connection between PCIe devices regardless of the number of lanes. (Credit: Ravi Budruk, PCI Express Basics)
accommodate Serial ATA (SATA) 3.0, and USB 3.0 (backward compatible as USB 2.0). Although the SATA interface is well-established and widespread in the embedded space, PCIe for storage is growing in high-performance computing and other applications where load times are a concern. However, SATA is expected to coexist with PCIe in the industrial and embedded markets for several more years. Non-volatile Memory Express (NVMe) is a specification developed for SSDs that uses PCIe for data transfer. NVMe is employed more with SSDs of substantial capacity and is therefore used more in the server market rather than embedded applications. Most embedded applications typically do not require the huge, fast, and (presently) more costly storage of an SSD. However, PCIe’s reliability plays a good part in why PCIe is becoming the standard interface on the storage side.

One example of PCIe used in high-performance computing is in weather forecasting. Meteo-Swiss, the Swiss Federal Office for Meteorology and Climatology, uses servers densely populated with acceleration devices to compute weather forecast models for simulation. Meteo-Swiss achieves significant energy efficiency by connecting multiple accelerator devices (GPUs) using PCIe. Even so, PCIe networks must be engineered for a topology that reduces traffic congestion. A server or supercomputer that houses numerous accelerator devices (e.g., GPGPUs, Intel Xeon Phi) experiences an increased burden on intra-node communication networks using PCIe.

In the consumer market, PCI Express is used every single day, primarily with smartphones and tablets that use Thunderbolt™. Thunderbolt is a combination of PCI Express and DisplayPort into one standard, which of course we use to charge Apple products. According to Intel, Thunderbolt technology provides flexibility and simplicity by supporting both data (PCIe) and video (DisplayPort) on a single cable connection. “Thunderbolt™ 3 technology is 8x faster than USB 3.0 and provides 4x more video bandwidth than HDMI 1.4.” USB Type-C ports can also connect and communicate with Thunderbolt devices. Thunderbolt 3 uses four lanes of PCIe 3.0 and eight lanes of DisplayPort in one cable, with an integrated USB 3.1 (10 Gb/s) host controller. PCI Express is an excellent choice for mobile devices. The adaptable PCI Express has some very low power states, offers very high speed when it’s needed, yet barely sips power when it’s in a standby state. Some mobile devices internally use PCIe to drive data to and from the display or elsewhere.

HIGHER PERFORMANCE? HOW HIGH?
Whereas PCIe 3.0 was a radical departure from PCIe 2, the PCIe 4.0 protocol and encoding are similar to PCIe 3.0, as well as many other components. What makes PCIe 4.0 a challenge for the industry is that while throughput has increased dramatically with PCIe 4.0, the channels have not changed much from PCIe 3.0. The average channel length of a desktop computer is about 10 inches (~25 cm). Modern servers have channels measuring around 20 inches total. For PCIe 4.0 to increase in speed, higher frequencies must be put through the same channel that was used for the previous generation. However, the
tradeoff is an insertion loss, which is a loss that increases with higher frequencies. Insertion loss is a frequency-dependent loss in signal strength that is usually expressed in decibels. When you double the frequency, the result is a significant loss, and the ability to drive a signal into a channel and recover it at the other end is significantly diminished. PCIe 4.0 demands higher performance and considerably more attention to detail in implementation.

PCIe 3.0 survived in part because receivers have improved over the years. Using eye diagrams to test signal integrity, the acceptable level of eye height for an equalized PCIe 3.0 signal is 25 mV. For PCIe 4, that eye height has dropped to 15 mV.

Such a low voltage makes even a tiny level of noise an issue. Therefore, considerable attention to detail is going to be the means of implementing successful products, products that pass standards testing for PCIe 4, as well as interoperability testing with other PCIe 4.0 products. The PCIe 4.0 standard does specify a new component, a retimer, which takes data and passes it through as quickly as possible to allow you to extend the channel lane. A retimer has some advantages over a typical re-driver that relate to deterministic and random jitter. (Retimers were offered as an option in subsequent revisions to the original PCIe 3.0 standard). As Intel states it, “With PCI Express Gen4 (16 GT/s), data rate has increased by 2x compared to previous generation (8 GT/s), resulting in shorter channel reach. Common use cases include channels expanding over system boards, backplanes, cables, risers, and add-in cards.”

Another option to improve PCIe 4.0 performance is to use FR4 as the board material in printed circuit boards (PCBs). This approach mitigates frequency-dependent characteristics of the boards, which affects insertion loss to some degree. FR4 is fiberglass mesh that is weaved and pressed. Signal integrity issues are less of a problem with FR4 as a PCB material. Nevertheless, the signal integrity requirements of PCIe 4.0 are much higher than what engineers experienced with PCIe 3.0.

The PCIe 4.0 specification does provide guidelines for the new challenge it presents. PCIe is far from being “just an interface,” however. Phenomenal throughputs have been achieved with every release by PCI-SIG, the PCIe standards body, and thanks to the efforts of the multitude of engineers working to turn the specification into products that work well together. Successfully implementing the more demanding PCIe 4.0 will require not just adding a retimer, but also making small changes in many areas to accommodate high-frequency signals, from mounting connectors to meeting channel requirements for the specifications using statistical simulation. PCIe does not get as much attention as GPUs or processors that are tuned to implement neural networks, but without the significant gains the world has seen from PCIe in the past decade we could have been heading to yet another standard to create speed gains with an entirely different approach.

Lynnette Reese is Editor-in-Chief, Embedded Intel Solutions, and has been working in various roles as an electrical engineer for over two decades. She is interested in open source software and hardware, the maker movement, and in increasing the number of women working in STEM so she has a greater chance of talking about something other than football at the water cooler.
Q&A with Al Yanes, PCI-SIG

The first quarter of 2019 is on its way and so is the 1.0 version of PCI Express® (PCIe®) 5.0 specification.

By Anne Fisher, Managing Editor

Editor’s Note: The PCIe 5.0 Version 0.7 specification was released to members in June 2018. “5.0 primarily targets 400 Gigabit Ethernet and solutions that require doubling of the bandwidth without going wider,” PCI-SIG® President and Board Chair Al Yanes tells us. Edited excerpts of our interview follow.

EECatalog: PCI Express has that advantage of synergy because it is found in so many sectors.

Al Yanes, PCI-SIG: You hit the nail on the head. If you look at an embedded processor, it is going to use PCIe architecture; if you go to a mobile solution, you are going to have PCIe architecture. PCI Express technology is ubiquitous. For example, if you are designing a solution for enterprise, you may have picked it up on your previous assignment on storage for NVMe™.

“PCI-SIG® is focusing primarily on the speed change to accelerate our development of PCI Express® 5.0.”

You might realize, “I was working on storage for NVMe, and I have been moved to a mobile space and wanted to do an IoT solution—I can use PCI Express technology for that.” This is where the incumbent years of experience help; 20 million lines of code support the PCI Express

Move data faster, share PCIe devices, build composable systems, connect multiple host, expand IO within your system, PCIe Fabrics enable all these features in embedded systems. Use standard PCIe switches with Dolphin’s eXpressWare software to create next generation systems. Dolphin is an expert in PCI Express and offers design support and specialized software to create advance systems. These systems use either PCIe over copper or fiber cables as well as through backplanes.

Learn how you can use PCIe in your design
devices. It is a robust, solid, infrastructure from a tools perspective, from a software perspective, and from the perspective of debugging in the lab using oscilloscopes and logic analyzers, for example. PCI Express technology is very familiar and common, so the proliferation of that knowledge makes sense.

EECatalog: What are some of the market drivers for PCIe 4.0 and 5.0 architectures?

Al Yanes, PCI-SIG: Traditional enterprise servers as well as cloud storage via NVMe solutions. In the mobile space, we have seen increased adoption, primarily due to our L1 substates technology. L1 substates have a near zero idling power—this is something we introduced several years ago, and I have seen several of the mobile manufacturers adopt PCI Express technology, which is very good from a volume perspective.

EECatalog: Please give us a brief summary of the PCIe specification roadmap.

Al Yanes, PCI-SIG: The PCIe 4.0 specification came out in October 2017. We have completed the 0.7 version of the PCIe 5.0 specification, and we are projecting that the final spec will be available in the first quarter of 2019. The release of the PCIe 4.0 specification took seven years but on average we have been doubling bandwidth every three years. We are catching up with the PCIe 5.0 specification, which is anticipated to arrive in only two years.

The PCI Express 5.0 specification primarily targets 400 Gigabit Ethernet and solutions that require doubling of the bandwidth without going wider—where the only option they have is to go faster; we will remain the state of the art on bandwidth. If you do the math 400 GbE is 50 Gbps in each direction and a PCIe 5.0 x16 solution will give you 64 gigabytes in each direction for a total of 120 Gbps.

There is a lot of momentum already in the industry with 28 gig solutions and 56 gig solutions, so we are leveraging that. We are focusing primarily on the speed change to accelerate our development of PCIe 5.0 specification, even adjusting some of our specification processes to enhance development.

We believe PCI Express 5.0 architecture will continue to keep us at the forefront of interconnect technology with our members and with others who utilize PCIe architecture for their solutions. The PCIe 5.0 specification will meet the bandwidth needs across a range of industries like mobile, storage, 400 Gigabit Ethernet or Infiniband, accelerators and machine learning.

EECatalog: So PCI Express technology will be important for Artificial Intelligence, then?

Al Yanes, PCI-SIG: Yes, I was just reading the other day about Microsoft’s Project Catapult and those kinds of technologies are going to primarily utilize PCIe architecture based solutions.

At the Open Compute Project Summit, they emphasized 400 GbE; communication of data to their accelerators—all that is PCIe technology based. If you look at Microsoft’s Project Olympus—data is going to the GPUs via PCI Express architecture.

PCI Express technology is the main throughput for I/O into the CPU. Data going through PCIe. 5.0 technology will facilitate the machine learning, AI solutions and the accelerator attachments that Microsoft, Amazon and other heavy hitters are creating.
ACCES I/O Products, Inc.

Rugged, Industrial Strength PCI Express Mini Card Embedded I/O Solutions

Compatible Operating Systems: Linux (including Mac OSX) and Windows

ACCES I/O Products offers a variety of high performance PCI Express Mini Card (mPCIe) data acquisition and control cards and solutions. These PCIe Mini DAQ cards are perfect for a variety of applications requiring monitoring, control and industrial serial communications as well as other shock and vibration sensitive applications. Add the features you need in your application in hours, not days. Choose from many different models and options (including extended temperature) encompassing analog I/O, digital I/O, counter/timer, and serial I/O configurations.

All of our PCI Express DAQ products feature Plug-and-Play operation which permit the cards to be automatically detected and configured. This allows for easy installation in industrial, embedded, OEM or stationary systems. PCIe Mini cards greatly simplify how users add and upgrade systems. mPCIe is a third generation small form factor flexible interface designed for the modern mobile world, leveraging the mature and ubiquitous PCI Express and USB busses.

Call us today and start your application tomorrow. And remember, if you don’t see what you need, ask us and we will make it for you.

FEATURES & BENEFITS

◆ Digital Input / Output PCI Express Mini Card DAQ Products for compact control and monitoring applications. Choose up to 24 channels offering various voltage, isolation, speed, and counter/timer options.

◆ Serial Communication PCI Express Mini Card Products. Designed for use in retail, hospitality, automation, games, as well as point of sale systems and kiosks.

◆ Custom PCI Express Mini Card I/O Products. Over 25 years of product development, 350 COTS products, over 750 specials and options. If you don’t see what you need, ask us and we will make it for you.

TECHNICAL SPECS

◆ Serial COM mPCIe cards feature 2 or 4-port versions with 128-byte FIFOs for each TX and RX. Software selectable RS-232/422/485, and data communication rates to 921.6Kbps in RS232 – as high as 3Mbps in differential modes – 16Mhz with custom crystal option.

◆ Isolated mPCIe RS-232/422/485 cards feature 4 or 2 ports of Tru-Iso™ isolated serial communications. 1.5kV isolation is provided port-to-computer and 500V isolation port-to-port on ALL signals at the I/O connectors along with ±15kV ESD protection on all signal pins. Also included...industrial operating temperature (-40°C to 85°C) and RoHS certification.

◆ Our Tru-Iso™ products are designed under IPC-221B. The circuit is isolated with a ≥ 300mil gap between all signal and plane layers between the ports and the PC, and a ≥ 100mil gap port to port. These gaps are rated under IPC-221B at 1500V (Port to PC) and 500V (Port to Port).

◆ The PCI Express Mini Card product line PCB size measures just 30mm x 50.95mm and includes two mounting holes to ensure secure and easy installation using standard standoffs.

◆ All mPCIe cards include high retention latching connectors for shock and vibration mitigation.

AVAILABILITY

Now

AVAILABILITY

CONTACT INFORMATION

ACCES I/O Products, Inc.
10623 Roselle Street
San Diego, CA, 92121
USA
Tel: 1(858)550-9559
Toll Free: 1(800)-326-1649
Fax: 1(858)550-7322
contactus@accesio.com
http://acces.io
Teledyne LeCroy

Teledyne LeCroy’s PCI Express® Protocol Analysis and Test Tools

IT’S ALL ABOUT THE TOOLS

Compatible Operating Systems: Windows XP/7/8/10
Specification Compliance: PCI Express Standards: 1.1, 2.0, 3.0 and 4.0

Whether you are a test engineer or firmware developer, Teledyne LeCroy’s Protocol Analyzers will help you measure performance and quickly identify, troubleshoot and solve your protocol problems.

Teledyne LeCroy’s products include a wide range of probe connections to support XMC, AMC, VPX, ATCA, microTCA, Express Card, MiniCard, Express Module, CompactPCI Serial, MidBus connectors and flexible multi-lead probes for PCIe® 1.0a, 1.1 (“Gen1” at 2.5GT/s), PCIe 2.0 (“Gen2” at 5 GT/s) and PCIe 3.0 (“Gen3” at 8 GT/s) and PCIe 4.0 (“Gen4” at 16 GT/s).

The high performance Summit™ Protocol Analyzers feature the new PCIe virtualization extensions for SR-IOV and MR-IOV and in-band logic analysis. Decoding and test for SSD drive/devices that use NVM Express, NVMe-MI with SMBus, SCSI Express and SATA Express are also supported.

Teledyne LeCroy offers a complete range of protocol test solutions, including analyzers, exercisers, protocol test cards, and physical layer testing tools that are certified by the PCI-SIG for ensuring compliance and compatibility with PCI Express specifications, including PCIe 2.0.

FEATURES & BENEFITS

◆ One button protocol error check. Lists all protocol errors found in a trace. Great starting point for beginning a debug session.
◆ Flow control screen that quickly shows credit balances for root complex and endpoint performance bottlenecks. Easily find out why your add-in card is underperforming on its benchmarks.
◆ LTSSM state view screen that accurately shows power state transitions with hyperlinks to drill down to more detail. Helps identify issues when endpoints go into and out of low power states.
◆ Full power management state tracking with Teledyne LeCroy’s interposer technology. Prevents loss of trace data when the system goes into electrical idle.
◆ Teledyne LeCroy’s Data View shows only the necessary protocol handshaking ACK/NAKs so you don’t have to be a protocol expert to understand if root complexes and endpoints are communicating properly.
◆ Real Time Statistics puts the analyzer into a monitoring mode showing rates for any user term chosen. Good for showing performance and bus utilization of the DUT.
◆ Zero Time™ Search provides a fast way to search large traces for specific protocol terms.
◆ Config space can be displayed in its entirety so that driver registers can be verified.
TECHNICAL SPECS

Analyzer

- **Lanes supported:** x1, x2, x4, x8, x16
- **Speeds:** 2.5GT/s, 5GT/s and 8GT/s
- **Probes/Interposers:** active and passive PCIe slot, XMC, AMC, VPX, Express card, Express Module, Minicard, Mid-Bus, Multi-lead, External PCIe cable, CompactPCI Serial, U.2, M.2, OCuLink, and others
- **Form factor:** Card, Chassis

Exerciser

- **Lanes supported:** x1, x2, x4, x8, x16
- **Speeds:** 2.5GT/s, 5GT/s, 8 GT/s, 16GT/s
- **Emulation:** root complex and endpoint emulation

Protocol Tests

- **Speeds:** 2.5/5/8/16 GT/s operation
- **Tests:** Test PCIe 2.0/3.0 compliance (Certified by PCI SIG for Link/Transaction layer tests)
 - Test NVMe Conformance (Required by UNH-IOL for NVMe Conformance Integrators List)
 - Corner Case Testing
 - LTSSM Testing
 - Dynamic Equalization Testing
 - Speed/link Test Arcs
 - G2 Validation tests
 - PTM Testing
 - L1 Substate Testing
 - Trace Expert
 - NVMe-MI

APPLICATION AREAS

SSD, Switches, Servers, Storage, Add-in Cards, Chips

CONTACT INFORMATION

Teledyne LeCroy
3385 Scott Blvd.
Santa Clara, CA, 95054
USA
Toll Free: 1(800) 909-7211
Fax: 1(408) 727-6622
psgsales@teledynelecroy.com
www.teledynelecroy.com